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ABSTRACT 

In the first part of the paper cross sections for the electron impact ioniza- 

tion of the 2s and the 2p , rn = 0, r t l  states of atomic hydrogen have been calcu- 

lated, using two forms, B.E. (i) and B.E. (ii), of the Born exchange approximation. 

For the form B.E. (i) it is found that inclusion of exchange increases the cross 

section for the 2pm = *l- c transition but decreases the cross sections for the 

2s - c and 2pm = 0 - c transitions. In the B.E. (ii) calculation inclusion of ex- 

change necessarily decreases the cross sections. For the 2s - c transition 

Prasad's Born exchange calculations are verified. 

In the second part the binary collision approximation of Vainshtein has been 

applied to the 2s and the 2p ionization and it is found that the Vainshtein approx- 

imation with its proper choice of effective charge does not agree with the Born 

exchange approximation. A new expression for the exchange amplitude has been 

derived in the Vainshtein approximation. 

r- 

- 

W e  have concluded by comparing the results of the Born, the Born exchange, 

the Born-Ochkur, and the Vainshtein's approximation for the ionization of the 1 s , 

2s and the 2p states of atomic hydrogen. 
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I. INTRODUCTION 

In this paper' the impact ionization cross sections for the second quantum 

level of atomic hydrogen are calculated by two different procedures. The first 

is the Born exchange approximation developed by Peterkop.2 This method has 

been studied and applied to the ionization of H(1s) and H(2s) by several authors. 3-7 

However for the 2p states, because of the mathematical complexity, the Born 

exchange calculation has not been so far carried out. This will be done in 

Sec. II. 

We have also calculated these cross sections using both the original binary 

collision approximation of Vainshtein et al., * * and the modified form developed 

by Ornidvar lo  and Crothers." In this case the two forms of the binary collision 

theory yield cross sections which can differ by as  much as an order of magnitude. 

In Sec. 111 we formulate the theory and point out the approximations which have 

been made. Vainshtein et al. included exchange by an approximation similar to 

that used by Ochkur?' 

treated by the same type of procedure used to solve the direct matrix element.13 

0- I 

It is shown in Sec. III that the exchange te rm can be 

In Sec. IV the results of our calculations a re  presented and compared with 

Born and 'Born Ochkur calculations. 
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II. BORN EXCHANGE 

A. General Theory 

If we let k, , k, and k represent respectively the momenta of the incident, 

scattered and ejected electrons, the total cross section for the ionization of 

atomic hydrogen by electron impact is given in atomic units by 

(1 1 
Q = 1 [ ' 2  k , k d e  (5  \ T - T e x \  2 1  + -  ( T  + T e x /  d k d k , .  

42k, 4 4 

Here  5 is the energy of the ejected electron in atomic units, E = the maximum 

value of E ,  and k and k, represent unit vectors in the directions of k and k, 

respectively. For transitions from atomic state 1 to state 2 the direct amplitude, 

T(1,2), and the exchange amplitude, Tex (1,2) are given by 

1 

where r, and r2 are the coordinates of the atomic and incident electrons with 

respect to an infinitely heavy nucleus, \I, (r, , r2) is the total wave function, and 

cp, (r) is the final atomic state. 

If we are dealing with ionization the matrix elements (2) and (3) can be r e -  

duced to functions of k and k , ,  hence in this paper we will often write the 

transition amplitudes in the form T ( k ,  k,) and Tex ( k ,  k,). 
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Peterkop, showed that the exchange matrix element T,,(k, k,) could be 

derived from the direct matrix element T(k,  kz) by interchanging the wave 

vectors k and k, of the ejected and scattered electrons and multiplying the 

resultant by a phase factor. That is 

He was not, however, able to specify an unambiguous method of calculating 

6 (k, k,) . Later Peterkop3 used the first Born approximation to study the con- 

tribution of exchange to the cross section for the ground state ionization of 

hydrogen atom by incident electrons. H e  chose 

6 (k ,  k,) = 0 (5) 

as a reasonable value, but he also considered the case 

L 

This latter case yields the maximum interference between the direct and ex- 

change amplitudes and hence the minimum cross section. Prasad4 duplicated 

Peterkop's ground state calculation and also applied the theory to H(2s). Other 

phase choices have been suggested by Rudge and Seaton5 who have carefully 

studied this problem. We will, however, here consider only the two choices 

given above. These choices wil l  be hereafter also be designated as B.E. (i) and 

B.E. (ii) for Eq. (5) and (Eq. (6)  respectively. 

For comparison purposes we also calculate the cross sections in the Born- 

Ochkur exchange approximation in which one retains only the first term of the 
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expansion of Tex (1,2) in reciprocal powers of k, . In the ionization case the 

exact first term is not normally used. Several simplified versions of this approx- 

imation have been published. We here use that of Prasad4 who put 

where q = k,-k,, andTB(1,2) is the Born transition amplitude. This differs 

slightly from the equation given by Ochkur12 for ionization but yields similar 

cross sections. 

B. Calculation of the Exchange Cross Sections 

Let 4 and m be respectively the angular momentum and magnetic quantum 

numbers of the atomic electron, and let the z axis of the system be along the 

momentum transfer vector q = k, - k, . In the Born approximation the transi- 

tion amplitude for the ionization of H ( 2 ,  t, m) can then be written14 

2nao 

1 - e x p  (-277ao) 
1 

1 - t (q - k), 
Y =  4 , D = i  4 [ ( + t i k ) 2  (9) 

( k t  i k ) 2  t q 2  

And p' is the azimuthal angle of k in the coordinate system (x', y', z' ) ,  (Cf. 

~ 

Fig. l), which has q as its polar axis. 
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The quantities A C, A ,  Mi and Ni a re  dependent on the quantum numbers 

4 and m . They are: 

2s case: (8 = 0, m = 0) 

; C = l , X = 5  1 A = -  
256 

M, = q [’ - 2k2 - 3q2 - 2k4 + 2q4] , 
8 

M, = -k - -  k2 - 7q2 - 2k4 - 4k2 q2 t 6q4] , [i  

c 

1 
8 

N, = - [ - - t 2k2 t 3q2 + 2k4 - Pq4] , 

N, = (4qk) (1 + k2 - q2) 
L 

2p m = o case: (8  = 1, m = 0) 

M, = k (+ t k2 t 3q2)) 

M, = q (1 - 4k2 - 4q2) 

M, = k - - -  k2 + 5q2) ( :  

q2 - k4 - 3q4) 

N, = kq (4 - 8q2) 

N, = (1 - ?k2 - q2 - 2k4 + 6k2 q2) (11) 
4 2  
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2p m = htl case: ( 4  = 1, m = k l )  

which occurs in (1). As illustrated in Fig. 1, we choose (x,y,z) as our fixed 

reference system with Z = k, . The polar and azimuthal angles of k and k, are  

respectively (a ,,B) and (a,b) in the (x,y,z) system, and (a',/?) and (a',b') in the 

(x' , y' , z') system. Since the position of x' in  the (x',y') plane is arbitrary, we 

choose x ' l  k, so that only two Eulerian angles, 0 and are  required to de- 

scribe the transformation from the unprimed to the primed systems. Now all 

of the quantities appearing in direct and exchange matrix elements a re  scalars 

and invariant under rotation of the coordinate system except the terms contain- 

ing the azimuthal angles p' and ,B:, 

systems. The necessary transforms for  these two angles a re  given by15 

i 

which re fer  to two different coordinate 

8 

M, = q 

M, = -k 

M, = 0 

No = 0 

1 N, = 
2 

N, = 0 

The exchange matrix element (4), with phase choice (5) o r  (6) is found by 

interchanging k and k, in Eqs. (8) to (12). But in the exchange matrix element 

the polar axis is q,, = k, - k  . Both q and qex must be referred to a common 

coordinate system if we are  to evaluate the interference integral, 



t cos 0 c t n  (b - P ) ,  ctn a sin 0 
sin (b - P )  tan ,B' = 

C O S  0 = q kl /qkl  . (14) 

Equation (14) is similarly used for the transformation of p:, i f  k and k, are  

interchanged. 

It can be shown that in the five dimensional integral in (1) the azimuthal 

variables ,B and b appear only in the form(b-P), and this allows one of them to 

be analytically integrated. The four remaining integrations were performed 

numerically by Gaussian Quadrature. The numerical results are presented and 

discussed in  Sec. IV. 

ID. THE VAINSHTEIN APPROXIMATION 

A. Theory 

In this theory, qualitatively speaking, the problem is considered as a binary 
-? 

collision between the incident and atomic electrons in the Coulomb field of an 

infinitely heavy nucleus. This approximation was introduced by Vainshtein et al. , * 
with the hope that it would give a marked improvement over the more usual pro- 

cedure of treating the interelectronic interaction as a perturbation. In some 

cases  it appears to have done so, but recently the validity of the three approxi- 

mations made in the theory has been questioned. 

effective charge zpproiirm&io::; (b) the pez~ing a-pproximation and (c) the change 

in sign of an exponential argument. Below we formulate the theory, but some 

These three are  (a) the 10,16 
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details previously given by Vainshtein et  al., are  omitted. On the other hand 

the derivation of the effective change has not been given by Vainshtein et  al. 

For the benefit of the reader who is not familiar with the method, this derivation 

will be given in Appendix A,  and it is shown that the approximation of the effective 

change is subject to many questions. We then apply the method to the ionization 

of hydrogen atoms in its first excited states. The results indicate that there is 

need for further investigation of this theory. 

The exact wave function is written in the form 

(r,y 5) = 9, (r,) g (r, 7 r2))  (15) 

where 'P, (r) is the initial atomic state and g (r, , r2) a function which will be de- 

rived below. If this is substituted into the Schrbdinger equation and the new 

variables R = (r2 t r , ) / 2  and p = (r2 - r 1 ) / 2  are  introduced then 

The solution of the homogeneous equation, Q = 0,  with the correct asymptotic 

form is 

ik, '(R t p  ) 
g,  (R, P )  = Ne F ( i v ,  1 ,  i k , R  - ik,  R) 

x F ( - i v ,  1 ,  ik,  p - ik, - p ) .  

10 



where N =r (1 - i v )  r (1 + i v )  and v = 5 /k, . We will use an effective charge, 5 , 

which was derived by Vainshtein et al. and which tends to minimize Q when p 

and R a re  large: 

k l  5 =  
k, t q '  

being the ionization potential of the initial state of the target atom. 

The use of the homogeneous solution (17) together with (18) is known as  the 

effective charge approximation. The cross sections obtained by this method are  

moderately sensitive to the choice of 5 .  

In evaluating the direct matrix element T(1,2) Vainshtein et al. dropped the 

core term 1/r2  from the interaction potential (l/r12 - 1/r2), since it gives a 

zero contribution to the transition amplitude in the Born approximation. This is 

'f probably not justified in their theory since their initial and final wave functions 

- a re  not orthogonal. In Appendix B this te rm has been treated and it is found that 

the peaking approximation is not applicable. To simplify the problem we there- 

fore also neglect the core term, substitute (15) and (17) in (2), apply the peaking 

approximation and obtain 

477 

T ( l , 2 ) = 7 A  9 < 9 2  [ e i q v r  I T l >  

where 

x F ( - i v ,  1 ,  i k ,  p - i k ,  - p )  d 3 p .  

11 



Vainshtein et al. put (20) in the form of Nordsieck's Integral" by changing 

2 

x = ( q 2 2 )  , A €  = ki - ki . 
A€ t 3q 

Hei-e the Fourier transform; (4) is defined by 

Notice from (21) that the ratio of T (1, 2) to TB (1, 2)  is given by 

F ( i v ,  - i v ,  1; X ) / F ( i v ,  - i v ,  1; 1) 

which for X < 1 is always less than unity. Thus the effect of the change of sign 

i s  to make the cross section calculated by Vainshtein's method always less than 

the Born cross section. 

Omidvar" and Crothers'l have pointed out that the integral in (20) can be 

evaluated exactly. They obtained: 

l- 
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B. Exchange 

Vainshtein et al. included exchange in their theory by an approximation 

which has similarities to  the Born-Ochkur approximation. This approximation 

leads to the Born-Ochkur exchange formula if  the function g (r, '1,) in (15) is 

replaced by e 
i k ,  * '* . Their equation for the exchange amplitude is 

W e  will proceed to evaluate the exchange amplitude in the same framework 

as the direct amplitude was evaluated, and we avoid the additional approximation 

used by Vainshtein for the evaluation of exchange. The final result has previ- 

ously been reported. l 3  It is helpful in this case to introduce Fourier transforms 

C1 (p,) and;z (p, ) for 'p, (r,) and 'p, (rz ) respectively. As before we make the 

peaking approximation and carry out the R integral to obtain for the electron- 

electron interaction te rm 

7 

... 

i ( k , t k , - t )  ' p - x p  
F ( - i v ,  1 ,  ik ,  p - ik, p )  d3 p .  (24) 

Before performing the p integral it is helpful to introduce I = (k, + k, - t j/2. 

We then obtain 
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TZx ( 1 ,  2 )  = 4 N J  q1 (k2 - T )  q; (k, - T )  I ( T )  d37 

where 

x2 t 4r2  
A' + 472 - 4k,  - T - 2 ik ,h  

I ( T )  = l i m  

In (26) the azimuthal integral can be carried out analytically, but the polar 

and radial integrals must be done numerically. However in the case of ioniza- 

tion T; (k,  - T ), the Fourier transform of the Coulomb wave function, contains 

a third order pole at k, - k - T = 0. In the usual fashion we can therefore use 

the peaking approximation to remove I (k, - T  ) from under the integral sign. It 

can then be shown that 

Hence 

Te ( 1 , 2 )  = q 2 N T B ( 1 , 2 )  Exp b y l  t i v l n [ ) k 2 -  k * k , l / ( k ,  - k ) 2 1 ) 1  ex 

p , = O i f k 2 - k .  k , > O  



In this approximation the core potential term can be evaluated. The inte- 
I 

grals are similar to those in the direct core term, Appendix B. With the aid of 

the usual peaking approximation we find 

2 - ( 2 ~ ) ~  NX, (k,) cp; (k,). (29) 

that Here X, (p) is the Fourier transform of 'p, ( r ) / r  . It has been pointed 

in this approximation the value of T,", (1,2) is unchanged if  the core potential is 

taken to be l/r2 instead of l/r, . 

IV. RESULTS AND DISCUSSION 

A. Numerical Accuracy 

Each four dimensional numerical quadrature in the Born exchange calcula- 
-5 

tion, Sec. IS, consumed many minutes of computer time. It was not therefore 

always practical to check the accuracy of the integrals by doubling the number 

of points in each quadrature. The accuracy of our results was checked both by 

examining the convergence of the integrals as  the number of Gaussian points used 

was increased and by comparison with the (2s) results of Prasad4 and with the 

Born cross sections.18 The number of Gaussian points needed to obtain con- 

vergence to four significant figures increases as the energy of the incident 

electron increases. At an incident energy of i.44 Syd. we used 42 paizts irr 

each of the angular integrations and 10 points in the energy quadrature. Because 

Y 
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of the time restrictions an the availability of the computer we used these same 

number of points at 3.24 Rydbergs. However, our results at this energy may be 

as much as 1% too small ; we therefore did not run any higher energies. Our 

first Born cross sections are within .2% o r  better of Omidvar’s 1965 results at 

1.44 Ryd. and below except at .36 Ryd. where we differ by as much as .6%. In the 

(2s) case we generally agree with Prasad (1965) to within 1% o r  better. However, 

at 0.64 Ryd. h i s  B.E. (i) cross section is 9% lower than ours. W e  wonder if this 

may not be due to a clerical e r r o r  on his part. 

Shown in Table 1 are the first Born and the Born exchange cross sections 

B.E. (i) and B.E. (ii) calculated by four dimensional numerical quadrature. 

Recall that B.E. (ii), Eq. (6), corresponds to the maximum possible interference 

and therefore to the minimum cross section in this approximation. 

B. Effect of the Vainshtein approximations 

The no exchange binary collison approximation cross sections for the ioni- 

zation of H(ls), H(2s) and H(2p) by electron impact are given in Figs. 2-4. Curves 

1A and 1B were calculated using the Vainshtein et al., transition amplitude (21), 

while curves 2A and 2B represent the present theory (19) and (22). A refers to 

an effective charge of unity (no screening by the nucleus), and B refers to an 

effective charge given by (18), which is assumed to minimize the neglected, 

inhomogeneous, portion of the differential equation defining the Vainshtein func- 

tion g ( r l ,  r2). The introduction of the effective charge given by (18) into the 

~ ~ 
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present theory decreases the calculated cross  sections by about 50% at the peak. 

However in the Vainshtein version the effective charge shifts the position of the 

peak and increases its height by 50%. A s  the introduction of the effective charge 

reduces the interaction potential between the two electrons it would seem more 

natural for the effective charge to reduce the cross section. 

The only difference between the present theory and that of Vainshtein et al. 

is that Vainshtein arbitrarily introduces a change of sign in (20) while we evalu- 

ate (20) exactly. Figure 2 shows that it is this sign change which is most im- 

portant in  causing the agreement between the theory of Vainshtein et al. and the 

experimental data of Fite and B r a ~ k m a n n ' ~  in the 1s - c transition. The effect 

of this approximation is even greater in the 2s  - c and 2p - c cases as is shown 

in Figs. 3-4. The only reason given by Vainshtein et al. for making this change 

of sign is that the peaking approximation should over-estimate the cross sections 

and the sign change will tend to compensate for this. The peaking approximation 

has recently been shown to give very poor results in two other scattering 

theories 2o I * but there seems to be no definite cri teria for judging the accuracy 

of the peaking approximation in a given case. The only known check is to do the 

integral exactly. In the Vainshtein theory the authors are attempting to do this 

by numerical integration, however it appears to be a formidable task. Until 

this integration is completed, both the peaking approximation and the sign change 

should be considered of doubtful validity. 

7 
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It should be mentioned that Crothers and McCarro122 got around Vainshtein's 

sign change in (20) by using the Post matrix element for  the transition amplitude. 

Their results for excitation cross  sections were much closer to Vainshtein et  al.'s, 

than to those given without the change of sign approximation. While Crothers" has 

published details of how the Crothers-McCarroll approximation could be applied 

tn ionization, no ionization cross sections have yet been published for this method. 

No numerical calculations using the exchange formulae (25), (28) and (29) a r e  

given in this paper as we thought the peaking approximations made should first 

receive further study. 

C. Comparison of Theories 

In Figs. 5-7 the B.E. (i) and B.E. (ii) a re  compared with the first Born ap- 

proximation, with the Born-Ochkur exchange calculations of Prasad4 and with 

the original Vainshtein and Vainshtein-exchange formulas (21) and (22), for the 

transitions 1s - c,  2s  .+ c,  and 2p  - c (averaged over m = 0, &1). In Fig. 5 the 

1s -. c case is shown. Note that the B.E. (ii) calculation agrees best with the 

experiment of Fite and Brackmann l9 at low impact energies, but that all the 

curves excepting only the first Born, a re  fairly closely grouped. The 2 s -  c 

and the 2p .+ c cases appear quite different from the ground state. The various 

exchange theories are  no longer closely grouped together, except for the B.E. (ii) 

and Born-Ochkur exchange approximations which nearly coincide. The B.E. (i) 

curve has moved up close to the first Born curve while both the Vainshtein and 

the Vainshtein-exchange curves have dropped f a r  below the others. 

18 



For large principle quantum number, n, the ionization cross section, Q, 

should be proportional to n4 both classically and quantum mechanically. In 

fact i f  for large n Q/n4 is plotted versus the impact energy divided by n2 the 

curves for the various n should coincide. Normally we should expect this to be 

more or  less true for small n. Comparison of the Q(ls -.. c) and Q(24m 4 c) 

at the peak of the curves in Figs. 5-7 shows that this expectation is fulfilled by 

all the theories shown except the original Vainshtein theory. Figures 2-4 show 

that the Vainshtein theory without the change of sign also fails to satisfy the 

scaling law. 

At high impact energies the Vainshtein theory goes to the-first Born approx- 

imation but it does so more slowly than the other theories mentioned here. At 

400 e V  there is a small but noticeable difference between the cross  sections 

'7 predicted by the first Born and the Vainshtein theories. 

% 

In three of the approximations discussed in this paper exchange has been 

included in such a way as to automatically reduce the calculated cross sections. 

These approximations are: the Born-Ochkur Eq. (7), the original Vainshtein 

theory Eq. (23), and the B.E. (ii) version, Eq. (6), of the Born exchange theory. 

However the inclusion of exchange can cause the cross sections to increase. 

Table 1 shows that for  the transition 2pm = *1-, c our B.E. (i) cross sections 

are larger than the first Born approximation. The differential cross sections 

were also increased at certain angles and energies in the 2 s  and 2pm = 0 cases 

although in these latter cases the integrated cross sections were decreased. The 

19 



upper bound of possible cross sections in the Born exchange theory lies as far 

above the first Born curve as the B. E. (ii) points lie below it. 

W e  would like to acknowledge useful conversations with Dr .  M. H. Mittleman 

about the Binary Collision Theory. All  numerical calculations were done on the 

IBM 360-50-65 of the Laboratory for Theoretical Studies, Goddard Space Flight 

Center . 

~~ 
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Appendix A 

In this appendix we t ry  to justify the use of the effective change approxi- 

mation. Since the derivation-to the approximation is given neither by Vainshtein 

et. a1 nor in an analogous paper by Crothers and McCarroll?2 it is appropriate 

that this derivation will be given here. 

In finding the form of Q when p and R are  large we assume that according 

to (16 ) ,~ (R ,  p )  = exp k i k ,  

totic form of the confluent hypergeometric functions we can show that 

(R +p ) g,(R,p ). Then by making use of the asymp- 

.. where 8' and 8" a re  angles of colatitudes of p and R with respect to k, as the 

z-axis, andip  and are  unit vectors in the directions that p and 8' increase. 

Similar definition applies to iR and Similarly 

z '  = i k ,  p ( l - c o s 8 ' ) ,  z " = i k l R ( l - c o s B " ) ,  y = a r g r ( l  t i v )  (A3) 

For atomic states we have anologuously 

V dn cp (IS)  = - al ir , (A4 ) 

21 



In these equations al = Z/ao and a2 = Z/2ao, with Z the nuclear charge anda, the 

Bohr radius. al  , a@, and % are unit vectors for the spherical coordinates r , e ,  

9. 

1 -  A 

~ 

For p and R large the second terms in the second brackets of (Al )  are 

rapidly oscillating functions with unit magnitude. If we neglect them, we get for 

the 1s case 

If we neglect the angular part in the bracket of (A8), we can say that the absolute 

value of V $ncp(ls) * V p  &n x cancels the (1 - 5 ) / p  term in (16) provided we take 

1 - 5 = u q .  This will then lead to (18). However, in reaching this conclusion, 

we have (i) replaced g (R,p ) by go (R,p),  (ii) considered only the region p -. 01, 

(iii) neglected the angular factor in (A8), and (iv) taken the absolute value of the 

gradient term. The validity of these approximations is questionable. 

For the 2s  and the 2p, m = 0, *l states Eq. (18) similarly holds with e l ,  the 

ionization potential for these states provided we consider the region rl -. a .  This 

22 



latter approximation makes the effective change approximation even less valid 

for the excited states. These considerations apply also to the Crothers and 

McCarroll's paper (Ref. 22), where the gradient terms contain the excited states. 

While it is difficult to estimate the accuracy of the effective change approxi- 

mation, it is found that cross sections are  sensitive to variations in the effective 

change. 

23 



Appendix B 

This appendix shows the failure of the peaking approximation when applied 

to the core term of the direct matrix element in the binary collision theory of 
a 

Vainshtein. To obtain the Vainshtein core term, (15) and (17) a re  substituted 

into the matrix element (2), and the following Fourier transforms a re  introduced 

The core term becomes 

d3 s, d3 s2 ;( s1 s 2 )  

= -8N ( 2 7 ~ ) - ~ / ~  c 
' J (s, - s2 - 2q)2 

i R  * s1 
x e  c F ( i v ,  1 ,  ik,R - ik ,  * R)d3R 

x 1 eip * s2 F (-iv, 1, ik, p - ik ,  * p )  d3 p , 
J 

where 

Following Vainshtein et al., we now make a peaking approximation in (A12). The 

integral with respect to R increases without limit as s1 - 0 while the integral 

with respect to p increases without limit as  s2  -. 0. But notice that when 

24 



s1 - - s2 = 0 that ;(o) = 0. Thus when part of the integrand becomes very large 

another part becomes very small and therefore we cannot apply the peaking 

approximation. 
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FIGURE CAPTIONS 

Fig. 1. The fixed coordinate system (x, y, z) and the variable system (x', y', z') 

used in the Born exchange calculation. The transition amplitude, (8) ,  is 

evaluated in the (x', y', z') system, but it must then be transformed to 

the (x, y, z) system to allow the interference cross section, (13), to be 

evaluated. The Eulerian angles relating the two systems are  0 , @ and 

v. In this problem v is arbitrary so we set it equal to zero by choosing 

x' perpendicular to k, . The polar and azimuthal angles of k are  (a,,B) 

in the (x, y ,  z) system and (a' , p' ) in the primed system. The trans- 

forms of the spherical coordinates from the unprimed to the primed 

system are  given by Goldstein (Ref. 15). 

Fig. 2. Ionization of H(1s). Study of the effective charge and the change of sign 

approximations in the Vainshtein binary collision theory. The experi- 

mental curve is from Fite and Brachmann (Ref. 19). The non-exchange 

theoretical curves 1A and 1B come from the Vainshtein et al. version, 

Eq. (21), of the binary collision approximation, while 2A and 2B come 

from the Omidvar version, Eq. (19) and (22), of this approximation. A 

refers to an effective charge of unity (no screening by the nucleus), and 

B refers to an effective charge given by Eq. (18). 

Fig. 3. Ionization of H(2s) by electron impact. The labels on the curves have 

the same meaning as in Fig. 2.  Note that this is a log-log plot and 

cross  sections less than one a re  not shown. 
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Fig. 4. Ionization of H(2p). Cross sections are averaged over m = 0, hl. The 

labels on the curves have the same meaning as in Fig. 2. 

Fig. 5. Cross sections for the ionization of H(1s) by electron impact. The 

experimental curve is from Fite and Brachmann (Ref. 17). The Born 

exchange cross sections B.E. (i) and B.E. (ii) refer to Eqs. (4-6) and 

the Born-Ochkur exchange to Eq. (17). The Vainshtein curves were 

calculated using formulas (21) and (23) which were taken directly from 

Vainshtein et. al. (Ref. 8). 

Fig. 6 .  Ionization of H(2s) by electron impact. The labels on the curves have 

the same meaning as in Fig. 5. 

Fig. 7. Cross sections for the ionization of H(2p) averaged over (m = 0, *I). 

The labels on the curves have the same meaning as in Fig. 5. 
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